

Year 11 Mathematics Specialist Test 6 2020

Proof and Complex Numbers

STUDENT'S NAME

DATE: Wednesday 9th September

TIME: 50 minutes

MARKS: 52

INSTRUCTIONS:

Standard Items:Pens, pencils, drawing templates, eraserSpecial Items:Scientific Calculator only, notes on one side of a single A4 page (these notes to be handed in
with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (2 marks)

Express the following recurring decimal as a fraction. It is not necessary to simplify the fraction.

0.013

2. (4 marks)

Prove by contradiction $\sqrt{3}$ is irrational.

3. (4 marks)

Prove the sum of five consecutive odd numbers is a multiple of five.

4. (12 marks)

Given z = 4 + 3i and w = 2 - 5i determine: (a) w^2 [2] (b) $z\overline{w}$ [2] (c) $\frac{w}{z}$ [3]

(d)
$$3z - 4w$$
 [2]

(e)
$$Im\left(\frac{1}{z}\right)$$
 [3]

5. (4 marks)

A quadratic equation in the form $x^2 + bx + c = 0$ has one of its roots 7 - 3i. Determine b and c.

6. (6 marks)

Prove

(a)
$$n^3 - n$$
 is a multiple of 6, for $n \ge 2$ [3]

(b) $\overline{wz} = \overline{w} \overline{z}$ given w and z are complex numbers

[3]

7. (8 marks)

(a) Solve
$$x^2 - 10x + 29 = 0$$

(b) Determine the complex number z given $z - 2\overline{z} = 5 + 6i$ [4]

8. (6 marks)

Prove the following conjecture using mathematical induction,

for all $n \ge 1$, $\frac{x^{n+1} - 1}{x - 1} = 1 + x + x^2 + \dots + x^n$ where $x \ne 1$

9. (6 marks)

Use mathematical induction to prove the following conjecture.

$$2^{n+1}\sin x \cos x \cos(2x) \cos(4x) \dots \cos(2^n x) = \sin(2^{n+1}x)$$
 for $n \ge 0, n \in \mathbb{Z}$